Validation of the ICEsat vegetation product using crown-area-weighted mean height derived using crown delineation with discrete return lidar data
نویسندگان
چکیده
The Geoscience Laser Altimeter System (GLAS), a spaceborne light detection and ranging (lidar) sensor, has acquired over 250 million lidar observations over forests globally, an unprecedented dataset of vegetation height information. To be useful, GLAS must be calibrated to measurements of height used in forestry inventory and ecology. Airborne discrete return lidar (DRL) can characterize vegetation and terrain surfaces in detail, but its utility as calibration data for GLAS is limited by the lack of a direct relationship between the canopy height measurements collected by airborne and spaceborne lidar systems and coincident field data. We demonstrate that it is possible to use DRL to directly estimate the crown-area-weighted mean height (Hcw), which is conceptually and quantitatively similar to the Lorey’s height, which is calculated from forest inventory data, and can be used to calibrate GLAS without the use of field data. For a dataset from five sites in western North America, the two indices of height (Hcw from DRL and Lorey’s from forest inventory) are directly related (r2 = 0.76; RMSE of 3.8 m; intercept and slope of 0.8 m and 0.98, respectively). We derived a relationship between the DRL-derived Hcw and height information from coincident GLAS waveforms; the resulting equation explained 69% of variance, with an RMSE of 6.2 m. Résumé. Le système GLAS (« Geoscience Laser Altimeter System »), un capteur lidar (« light detection and ranging ») satellitaire, a acquis plus de 250 millions d’observations lidar au-dessus des forêts à l’échelle du globe, constituant ainsi un ensemble inédit de données d’information sur les hauteurs. Pour être utile, le capteur GLAS doit être étalonné par rapport à des mesures de hauteur utilisées dans les inventaires forestiers et en écologie. Les données lidar aéroporté à retours discrets (DRL) permettent de caractériser les surfaces de végétation et de terrain en détail, mais leur utilité comme données d’étalonnage pour GLAS est limitée par l’absence de relation directe entre ces données et les estimations de hauteur recueillies sur le terrain. Nous faisons la démonstration qu’il est possible d’utiliser les données DRL pour estimer directement la hauteur moyenne pondérée de la superficie de la cime (Hcw), qui est conceptuellement et quantitativement similaire à la hauteur moyenne de Lorey qui elle est calculée à partir des données d’inventaire forestier et qui peut être utilisée pour étalonner le capteur GLAS sans avoir recours à des données de terrain. Dans le cas des ensembles de données de cinq sites situés dans l’ouest de l’Amérique du Nord, les deux indices de hauteur (Hcw calculée à partir des données DRL et la hauteur moyenne de Lorey calculée à partir des données d’inventaire forestier) sont directement reliés (r2 de 0,76, RMSE de 3,8 m, intercept et pente de 0,8 m et 0,98 respectivement). Nous avons dérivé une relation entre la hauteur Hcw dérivée des données DRL et l’information sur la hauteur dérivée des formes d’onde correspondantes de GLAS; l’équation résultante a permis d’expliquer 69 % de la variance avec une valeur RMSE de 6,2 m. [Traduit par la Rédaction]
منابع مشابه
Errors in LiDAR-derived shrub height and crown area on sloped terrain
This study developed and tested four methods for shrub height measurements with airborne LiDAR data in a semiarid shrub-steppe in southwestern Idaho, USA. Unique to this study was the focus of sagebrush height measurements on sloped terrain. The study also developed one of the first methods towards estimating crown area of sagebrush from LiDAR. Both sagebrush height and crown area were underest...
متن کاملA New Method for Individual Tree Delineation and Undergrowth Removal from High Resolution Airborne Lidar
High density airborne LiDAR, for example FLI-MAP 400 data, has opened an opportunity for individual tree measurement. This paper presents a method for individual tree delineation and undergrowth vegetation removal in forest area. The delineation of individual trees involves two steps namely 1) tree crown delineation based on density of high points (DHP) and 2) separation of dominant trees and u...
متن کاملNew High-resolution Field Surveying Methods for Validation of Crown Attributes from 3d Scanning Laser Data
High density airborne LiDAR data has been used to provide detailed information on tree canopy structure. Recent research has reported that it is difficult to determine where the LiDAR data errors appear on the tree crown, as the returns generally underestimate tree height. This study introduces a novel way to assess vertical and horizontal patterns of airborne LiDAR data error using an error ma...
متن کاملAn Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission
The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow predicti...
متن کاملAutomated individual tree crown delineation from LIDAR data using morphological techniques
In current tree crown delineation from LiDAR data, treetops and 3D geometric shapes of tree crowns are frequently extracted from LiDAR-derived Crown Height Model (CHM) and used as references to localize and delineate crowns. However, it is difficult to detect deciduous treetops and delineate deciduous tree crowns. The 3D shape of a crown, which can be derived from CHM, may be taken as a half el...
متن کامل